In this paper, we prove that the general CNF satisfiability problem can be solved in $O^*(1.0638^L)$ time, where $L$ is the length of the input CNF-formula (i.e., the total number of literals in the formula), which improves the previous result of $O^*(1.0652^L)$ obtained in 2009. Our algorithm was analyzed by using the measure-and-conquer method. Our improvements are mainly attributed to the following two points: we carefully design branching rules to deal with degree-5 and degree-4 variables to avoid previous bottlenecks; we show that some worst cases will not always happen, and then we can use an amortized technique to get further improvements. In our analyses, we provide some general frameworks for analysis and several lower bounds on the decreasing of the measure to simplify the arguments. These techniques may be used to analyze more algorithms based on the measure-and-conquer method.
翻译:在本文中,我们证明一般的CNF可测量性问题可以用美元(1.0638 ⁇ L)的时间来解决,其中,美元是输入的CPF-公式长度(即公式中的字数总数),这改善了2009年获得的美元(1.0652 ⁇ L)的先前结果。我们的算法是通过使用测量和征服方法加以分析的。我们的改进主要归因于以下两点:我们仔细设计分支规则,处理第5级和第4级变量,以避免先前的瓶颈;我们表明,有些最坏的情况不会总是发生,然后我们可以使用摊销技术来进一步改进。在我们的分析中,我们为分析提供了一些一般框架,并就简化参数的措施的减少提供了一些较低的界限。这些技术可以用来分析更多基于测量和征服方法的算法。