For relational structures A, B of the same signature, the Promise Constraint Satisfaction Problem PCSP(A,B) asks whether a given input structure maps homomorphically to A or does not even map to B. We are promised that the input satisfies exactly one of these two cases. If there exists a structure C with homomorphisms $A\to C\to B$, then PCSP(A,B) reduces naturally to CSP(C). To the best of our knowledge all known tractable PCSPs reduce to tractable CSPs in this way. However Barto showed that some PCSPs over finite structures A, B require solving CSPs over infinite C. We show that even when such a reduction to finite C is possible, this structure may become arbitrarily large. For every integer $n>1$ and every prime p we give A, B of size n with a single relation of arity $n^p$ such that PCSP(A, B) reduces via a chain of homomorphisms $ A\to C\to B$ to a tractable CSP over some C of size p but not over any smaller structure. In a second family of examples, for every prime $p\geq 7$ we construct A, B of size $p-1$ with a single ternary relation such that PCSP(A, B) reduces via $A\to C\to B$ to a tractable CSP over some C of size p but not over any smaller structure. In contrast we show that if A, B are graphs and PCSP(A,B) reduces to tractable CSP(C) for some finite digraph C, then already A or B has a tractable CSP. This extends results and answers a question of Deng et al.
翻译:对于关系结构 A, 同一签名的 B, 承诺约束满意度问题 PCSP (A, B) 询问一个特定输入结构是否向 A 平方或甚至不向 B 平方。 我们得到保证, 输入完全满足这两个案例中的一个。 如果存在一个C 结构, 具有同质性 $A\to C\to B$, 那么 PCSP (A, B) 自然会向 CSP( C) 自然下降。 最了解的, 所有已知可移植的PCSP 都会以这种方式减少为可移植的 CSP 。 然而, Barto 显示, 一些针对有限结构 A, B 需要解决 C 的 CSP 。 即便有可能对有限 C 进行这种削减, 这个结构也可能变得任意大。 对于我们给出的每整数 $1美元和每质 A, B 的大小, 其单一的 美元与 CSP (A, B ) 的单一的对应关系, 通过一个共性链( A, PC) 和 C 到 B 结点的 C, 某些 C 的 C 以 C 美元 美元 平方 以 C 美元 的 C 向 B 为B 直方 的 。