Energy-Based Models (EBMs) are known in the Machine Learning community for the decades. Since the seminal works devoted to EBMs dating back to the noughties there have been appearing a lot of efficient methods which solve the generative modelling problem by means of energy potentials (unnormalized likelihood functions). In contrast, the realm of Optimal Transport (OT) and, in particular, neural OT solvers is much less explored and limited by few recent works (excluding WGAN based approaches which utilize OT as a loss function and do not model OT maps themselves). In our work, we bridge the gap between EBMs and Entropy-regularized OT. We present the novel methodology which allows utilizing the recent developments and technical improvements of the former in order to enrich the latter. We validate the applicability of our method on toy 2D scenarios as well as standard unpaired image-to-image translation problems. For the sake of simplicity, we choose simple short- and long- run EBMs as a backbone of our Energy-guided Entropic OT method, leaving the application of more sophisticated EBMs for future research.


翻译:能量模型(EBM)在机器学习界已有数十年的知名度。自二千年代初期的早期EBM着作以来,已经出现了许多通过能量势(未归一化的似然函数)解决生成建模问题的有效方法。相比之下,最优输运(OT)领域,特别是神经OT求解器方面,研究相对较少,仅有少数最近的作品(不包括使用OT作为损失函数并未对OT映射进行建模的WGAN方法)。 在我们的工作中,我们弥合了EBM和熵正则化OT之间的差距。我们提出了一种新的方法,允许利用前者的最新发展和技术改进来丰富后者。我们验证了我们方法在玩具2D场景和标准的非配对图像到图像翻译问题上的适用性。为了简便起见,我们选择简单的短程和长程EBM作为我们能量引导的熵式OT方法的骨干,将更复杂的EBM的应用留给未来的研究。

0
下载
关闭预览

相关内容

【NeurIPS 2021】学会学习图拓扑
专知会员服务
24+阅读 · 2021年10月22日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
17+阅读 · 2020年9月6日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月29日
VIP会员
相关VIP内容
【NeurIPS 2021】学会学习图拓扑
专知会员服务
24+阅读 · 2021年10月22日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
17+阅读 · 2020年9月6日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员