MDS self-dual codes have nice algebraic structures, theoretical significance and practical implications. In this paper, we present three classes of $q^2$-ary Hermitian self-dual (extended) generalized Reed-Solomon codes with different code locators. Combining the results in Ball et al. (Designs, Codes and Cryptography, 89: 811-821, 2021), we show that if the code locators do not contain zero, $q^2$-ary Hermitian self-dual (extended) GRS codes of length $\geq 2q\ (q>2)$ does not exist. Under certain conditions, we prove Conjecture 3.7 and Conjecture 3.13 proposed by Guo and Li et al. (IEEE Communications Letters, 25(4): 1062-1065, 2021).
翻译:MDS自体代号具有良好的代数结构、理论意义和实际影响。本文列出了三种类别,即自成(扩展的)通用Reed-Solomon代号与不同的代号定位器(扩展的)通用Reed-Solomon代号。结合Ball等人(设计、编码和加密,89:811-821,2021)的结果,我们表明,如果代号定位器不包含零,自成(扩展的)Hermitian自成(通用)GRS代号为$\geq 2q\(q>2)并不存在。在某些条件下,我们证明Guo和Li等人(IEE通信信,25(4):1062-1065,2021)提议的直截线3.13和直截线3.13。(IEEE通信信,25(4):1062-1065,2021)。