The multivariate adaptive regression spline (MARS) is one of the popular estimation methods for nonparametric multivariate regressions. However, as MARS is based on marginal splines, to incorporate interactions of covariates, products of the marginal splines must be used, which leads to an unmanageable number of basis functions when the order of interaction is high and results in low estimation efficiency. In this paper, we improve the performance of MARS by using linear combinations of the covariates which achieve sufficient dimension reduction. The special basis functions of MARS facilitate calculation of gradients of the regression function, and estimation of the linear combinations is obtained via eigen-analysis of the outer-product of the gradients. Under some technical conditions, the asymptotic theory is established for the proposed estimation method. Numerical studies including both simulation and empirical applications show its effectiveness in dimension reduction and improvement over MARS and other commonly-used nonparametric methods in regression estimation and prediction.
翻译:多变量适应性回归样条(MARS)是非参数多变量回归的流行估计方法之一,然而,由于MARS以边际样条为基础,以纳入共变量的相互作用,必须使用边际样条的产品,因此,当相互作用的顺序高且导致估计效率低时,这会导致无法管理的基础功能的数量。在本文中,我们通过使用可实现足够尺寸缩小的共变量线性组合来改进MARS的性能。MARS的特殊基础功能有助于计算回归函数的梯度,并通过梯度外产产品的eigen分析来估计线性组合。在某些技术条件下,为拟议的估算方法建立了无源理论。包括模拟和实验应用在内的数值研究表明,它相对于MARS和其他常用的回归估计和预测非参数方法,其尺寸的减少和改进是有效的。