Quantum maximum-distance-separable (MDS for short) codes are an important class of quantum codes. In this paper, by using Hermitian self-orthogonal generalized Reed-Solomon (GRS for short) codes, we construct four new classes of quantum MDS codes. The quantum MDS codes we construct have larger minimum distances. And the minimum distance of these codes is greater than $q/2+1$. Furthermore, it turns out that our quantum MDS codes generalize the previous conclusions.
翻译:量子最大距离( MDS ) 代码是重要的量子代码类别。 在本文中,我们通过使用 Hermitian 自我垂直通用Reed-Solomon (GRS 简称) 代码构建了四类新的量子MDS 代码。 我们构建的量子MDS 代码的最小距离更大。 这些代码的最小距离高于 $q/2+1 。 此外,我们的量子MDS 代码概括了先前的结论 。