We establish a formal correspondence between resource calculi and appropriate linear multicategories. We consider the cases of (symmetric) representable, symmetric closed and autonomous multicategories. For all these structures, we prove that morphisms of the corresponding free constructions can be presented by means of typed resource terms, up to a reduction relation. Thanks to the linearity of the calculi, we can prove strong normalization of the reduction by combinatorial methods, defining appropriate decreasing measures. From this, we achieve a general coherence result: morphisms who live in the free multicategorical structures are the same whenever the normal forms of the associated class of terms are equal. As an application, we obtain syntactic proofs of Mac Lane's coherence theorems for (symmetric) monoidal categories.
翻译:我们建立了资源计算和适当的线性多类别之间的正式对应关系。我们考虑了(对称)代表的、对称封闭的和自主的多类别的情况。对于所有这些结构,我们证明相应的自由建筑的形态可以通过打字的资源条件来呈现,直到缩小关系。由于计算线的线性,我们可以证明通过组合方法削减的高度正常化,确定适当的减少措施。我们从中取得了一个总体一致的结果:在自由的多类别结构中,生活在自由的多类别结构中的形态是相同的,只要相关条件的正常形式是相同的。作为一个应用,我们获得了麦克莱恩(对称)单项类别一致性理论的合成证据。