In recent years, many connections have been made between minimal codes, a classical object in coding theory, and other remarkable structures in finite geometry and combinatorics. One of the main problems related to minimal codes is to give lower and upper bounds on the length $m(k,q)$ of the shortest minimal codes of a given dimension $k$ over the finite field $\mathbb{F}_q$. It has been recently proved that $m(k, q) \geq (q+1)(k-1)$. In this note, we prove that $\liminf_{k \rightarrow \infty} \frac{m(k, q)}{k} \geq (q+ \varepsilon(q) )$, where $\varepsilon$ is an increasing function such that $1.52 <\varepsilon(2)\leq \varepsilon(q) \leq \sqrt{2} + \frac{1}{2}$. Hence, the previously known lower bound is not tight for large enough $k$. We then focus on the binary case and prove some structural results on minimal codes of length $3(k-1)$. As a byproduct, we are able to show that, if $k = 5 \pmod 8$ and for other small values of $k$, the bound is not tight.
翻译:近年来,在最小代码、典型的编码理论对象和限定几何和组合法中的其他显著结构之间有许多联系。 与最小代码有关的主要问题之一是对某个特定维度最短的最小代码的长度为$m(k, q)$(美元)的长度给予较低和上限限制值, 美元=mathbb{F ⁇ qq美元。 最近已经证明$(k, q)\geq(q+1)(k-1)美元。 在本说明中, 我们证明$( q)\geq( q)\ g)\ geq (q) )\ g-1美元( q)\ g-1美元( lax) 和其他显著值 。 因此, 先前已知的低限值=8美元( q) 美元( varepsilon (q) 美元) 的长度, 美元(k) $(k) $(q)\ q)\ leepsilon(k) (q)\ leq)\ rq(rq) =2} (+\\\ srightrow $(rock $) $(lock) $(lick)}}}} (我们证明$(r) $(r) $(r) (rut) $) $(r) $) $(lick) (n) (n) $) (n) (n) $) $(lut) }}}} ( $( $( $(lick) (n) (n) (n) =(k) (g) (n(k) (k) (l) (n) ( $) (n) (n) (n) (l) (美元) (n) (n) (k) (美元) (美元) (美元) (k) (n) (n) (美元) (美元) (k) (k) (n) (n) (k) (k) (k) (n) (美元) (k) (美元) (美元) (美元) (美元) (美元) (n) (美元) (美元) (k) (美元) (美元) (美元) (美元) (美元)