Procedural text understanding is a challenging language reasoning task that requires models to track entity states across the development of a narrative. A complete procedural understanding solution should combine three core aspects: local and global views of the inputs, and global view of outputs. Prior methods considered a subset of these aspects, resulting in either low precision or low recall. In this paper, we propose Coalescing Global and Local Information (CGLI), a new model that builds entity- and timestep-aware input representations (local input) considering the whole context (global input), and we jointly model the entity states with a structured prediction objective (global output). Thus, CGLI simultaneously optimizes for both precision and recall. We extend CGLI with additional output layers and integrate it into a story reasoning framework. Extensive experiments on a popular procedural text understanding dataset show that our model achieves state-of-the-art results; experiments on a story reasoning benchmark show the positive impact of our model on downstream reasoning.
翻译:程序性文本理解是一项具有挑战性的语言推理任务,它要求模型跟踪实体国家,贯穿叙述的全过程。一个完整的程序理解解决方案应该结合三个核心方面:投入的当地和全球观点,以及产出的全球观点。以前的方法考虑了这些方面的一部分,导致低精确度或低回顾度。在本文件中,我们提议了全球和地方信息(CGLI),这是一个建立实体和有时间间隔的投入代表的新模式,考虑到整个背景(全球投入),我们用结构化的预测目标(全球产出)共同模拟实体国家。因此,CGLI同时优化了准确性和回顾性。我们扩展了CGLI,增加了产出层,并将其纳入一个故事推理框架。关于广受欢迎的程序文本理解数据集的广泛实验表明,我们的模式取得了最新的结果;关于故事推理基准的实验显示了我们模型对下游推理的正面影响。