Aiming at recognizing and localizing the object of novel categories by a few reference samples, few-shot object detection (FSOD) is a quite challenging task. Previous works often depend on the fine-tuning process to transfer their model to the novel category and rarely consider the defect of fine-tuning, resulting in many application drawbacks. For example, these methods are far from satisfying in the episode-changeable scenarios due to excessive fine-tuning times, and their performance on low-quality (e.g., low-shot and class-incomplete) support sets degrades severely. To this end, this paper proposes an instant response few-shot object detector (IR-FSOD) that can accurately and directly detect the objects of novel categories without the fine-tuning process. To accomplish the objective, we carefully analyze the defects of individual modules in the Faster R-CNN framework under the FSOD setting and then extend it to IR-FSOD by improving these defects. Specifically, we first propose two simple but effective meta-strategies for the box classifier and RPN module to enable the object detection of novel categories with instant response. Then, we introduce two explicit inferences into the localization module to alleviate its over-fitting to the base categories, including explicit localization score and semi-explicit box regression. Extensive experiments show that the IR-FSOD framework not only achieves few-shot object detection with the instant response but also reaches state-of-the-art performance in precision and recall under various FSOD settings.


翻译:微小物体探测(FSOD)是相当具有挑战性的任务。以前的工作往往取决于微调过程,以便将其模型转移到新的类别,而很少考虑微调的缺陷,从而造成许多应用缺陷。例如,由于调整时间过细,这些方法在可变情况中远远不能令人满意,在可变情况中还远远不能令人满意,因为调整时间过长,而且这些方法在低质量(例如低发和级不完整)支持组的性能严重退化。为此,本文件提议了一种即时反应的微快、几发精确的物体探测器(IR-FSOD),它可以准确和直接探测新类别的对象,而无需微调过程。为了实现目标,我们仔细分析FSOD设置下更快R-CN框架中单个模块的缺陷,然后通过改进这些缺陷,将其扩大到IR-FSOD。具体地,我们首先为箱分类和RPN模块提出两种简单有效的元战略策略,以便能够立即对新对象类别进行检测。然后,我们引入两种明确的地面测试模型,包括直径分析模型,以直径分析模型,将地方化为基准。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员