We present combinatorial and parallelizable algorithms for maximization of a submodular function, not necessarily monotone, with respect to a size constraint. We improve the best approximation factor achieved by an algorithm that has optimal adaptivity and nearly optimal query complexity to $0.193 - \varepsilon$. The conference version of this work mistakenly employed a subroutine that does not work for non-monotone, submodular functions. In this version, we propose a fixed and improved subroutine to add a set with high average marginal gain, \threseq, which returns a solution in $O( \log(n) )$ adaptive rounds with high probability. Moreover, we provide two approximation algorithms. The first has approximation ratio $1/6 - \varepsilon$, adaptivity $O( \log (n) )$, and query complexity $O( n \log (k) )$, while the second has approximation ratio $0.193 - \varepsilon$, adaptivity $O( \log^2 (n) )$, and query complexity $O(n \log (k))$. Our algorithms are empirically validated to use a low number of adaptive rounds and total queries while obtaining solutions with high objective value in comparison with state-of-the-art approximation algorithms, including continuous algorithms that use the multilinear extension.
翻译:我们为在尺寸限制方面最大化子模块函数, 不一定是单质的单质, 提出组合和平行的算法。 我们改进了最优化的近似系数, 算法具有最佳的适应性, 并且几乎是最佳的查询复杂度为0. 193 -\ varepsilon$。 会议版的这项工作错误地使用了一个对非分子、 子模块功能不起作用的子常规。 在这个版本中, 我们提议了一个固定的和改良的子路由, 以高平均边际增益,\threseq 来添加一套, 返回一个以美元( log) $( n) 的适应性调制回合。 此外, 我们提供了两种近似性算法。 第一种是1/6 -\ varepsilon$, 适应性$( log ( n) ) $( n ) ) 和 查询复杂度 $O (n) 的调适率比值, 包括高的调价比值, 和高调价比值。