Arbitrary pattern formation (\textsc{Apf}) is a well-studied problem in swarm robotics. The problem has been considered in two different settings so far; one is in a plane and another is in an infinite grid. This work deals with the problem in an infinite rectangular grid setting. The previous works in literature dealing with \textsc{Apf} problem in infinite grid had a fundamental issue. These deterministic algorithms use a lot of space in the grid to solve the problem mainly because of maintaining the asymmetry of the configuration or to avoid a collision. These solution techniques can not be useful if there is a space constraint in the application field. In this work, we consider luminous robots (with one light that can take two colors) to avoid symmetry, but we carefully designed a deterministic algorithm that solves the \textsc{Apf} problem using minimal required space in the grid. The robots are autonomous, identical, and anonymous and they operate in Look-Compute-Move cycles under a fully asynchronous scheduler. The \textsc{Apf} algorithm proposed in [WALCOM'2019] by Bose et al. can be modified using luminous robots so that it uses minimal space but that algorithm is not move-optimal. The algorithm proposed in this paper not only uses minimal space but also asymptotically move-optimal. The algorithm proposed in this work is designed for an infinite rectangular grid but it can be easily modified to work in a finite grid as well.
翻译:任意模式形成 (\ textsc{ Apf}) 是一个在随机机器人中研究过的问题。 这个问题在目前两个不同的设置中得到了考虑; 其中一个在平面上, 另一个在无限的网格中。 这项工作在无限的矩形网格设置中处理问题。 在无限网格中处理 textsc{ Apf} 问题的文献中, 存在一个根本性问题。 这些确定性算法在网格中使用大量空间来解决问题。 这些确定性算法在网格中使用大量空间来解决问题, 主要是因为保持配置的不对称性或避免碰撞。 如果应用程序字段中存在空间限制, 这些解决方案技术是不会有用的。 在这项工作中, 我们考虑光亮的机器人( 有光, 有光, 有两种颜色) 以避免对称性。 但是我们仔细设计了一种确定性算法, 解决网格中所需的最小空间的问题。 机器人是自主的, 相同和匿名的, 并且可以在完全同步的表列下运行“ 数字- 数字- ” 周期中操作。 在微缩缩缩的系统中, 也可以使用一个微的算算算算法, 。 在微缩缩算法中, 在微的算中, 在微的算法中, 这个微的算法中, 它是被修改的, 。