项目名称: 不确定条件下基于分群策略的柔性Flow Shop调度问题研究
项目编号: No.71301124
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 管理科学
项目作者: 王恺
作者单位: 武汉大学
项目金额: 20.5万元
中文摘要: 柔性制造环境下的车间生产调度问题具有复杂性、不确定性、多约束等特点,是近年来生产管理和组合优化领域的重点和难点课题。本项目旨在应用运筹学、人工智能和Holonic制造系统(HMS)等学科相关理论和方法,采用分群策略研究不确定条件下的柔性Flow Shop生产调度问题,具有前沿性和探索性。主要研究内容是:分析HMS体系结构和运行机制,建立柔性Flow Shop的Holonic调度模型;依据随机特性分群的思想,研究基于聚类算法的资源Holon(加工机器)自组织机制;采用机器学习和仿真方法,建立Holon群随机特性的预测模型,实现不同生产环境下调度方法的自适应选择;引入基于数据挖掘的种群更新策略,探讨元启发式优化算法对资源Holon自治调度问题的求解效率;采用基于Q-学习和合同网协议的协商调度方法,提高资源Holon动态环境下的协调能力。研究成果将为解决不确定条件下的生产调度问题提供创新方法。
中文关键词: 柔性Flow Shop;不确定条件;调度;人工智能;Holon
英文摘要: Scheduling in flexible manufacturing environment is characterized by high complexity, inherent uncertainty, and multi-constraint. As an NP-hard combinatorial optimization problem, it has attracted considerable attention of the researchers in both academia and industry. By incorporating operational research and artificial intelligence techniques, this project aims to develop a holonic scheduling model to solve flexible flow shop (FFS) problems under uncertainties. This project mainly covers the following research topics: (1) establishing a holonic scheduling architecture for FFS problems under uncertainties; (2) developing a cluster-based self-organization mechanism to generate holon clusters with different stochastic nature; (3) developing a procedure of approach assignment based on machine learning and simulation techniques to measure the stochastic nature of each holon cluster, and accordingly assigning a suitable approach for schedule generation; (4) establishing a data-mining-based chromosome generation mechanism to improve the performance of population-based meta-heuristic; (5) integrating Q-learning with Contract Net Protocol to provide better adaptability and responsiveness in the face of disturbances. The proposed holonic scheduling model of this project provides a promising methodology to solve FFS sche
英文关键词: Flexible Flow Shop;Ucertainty;Scheduling;Artificial Intelligence;Holon