Photo enhancement plays a crucial role in augmenting the visual aesthetics of a photograph. In recent years, photo enhancement methods have either focused on enhancement performance, producing powerful models that cannot be deployed on edge devices, or prioritized computational efficiency, resulting in inadequate performance for real-world applications. To this end, this paper introduces a pyramid network called LLF-LUT++, which integrates global and local operators through closed-form Laplacian pyramid decomposition and reconstruction. This approach enables fast processing of high-resolution images while also achieving excellent performance. Specifically, we utilize an image-adaptive 3D LUT that capitalizes on the global tonal characteristics of downsampled images, while incorporating two distinct weight fusion strategies to achieve coarse global image enhancement. To implement this strategy, we designed a spatial-frequency transformer weight predictor that effectively extracts the desired distinct weights by leveraging frequency features. Additionally, we apply local Laplacian filters to adaptively refine edge details in high-frequency components. After meticulously redesigning the network structure and transformer model, LLF-LUT++ not only achieves a 2.64 dB improvement in PSNR on the HDR+ dataset, but also further reduces runtime, with 4K resolution images processed in just 13 ms on a single GPU. Extensive experimental results on two benchmark datasets further show that the proposed approach performs favorably compared to state-of-the-art methods. The source code will be made publicly available at https://github.com/fengzhang427/LLF-LUT.


翻译:照片增强在提升照片视觉美感方面起着至关重要的作用。近年来,照片增强方法要么专注于增强性能,产生了无法部署在边缘设备上的强大模型,要么优先考虑计算效率,导致在实际应用中性能不足。为此,本文介绍了一种名为LLF-LUT++的金字塔网络,它通过闭式拉普拉斯金字塔分解与重建,整合了全局与局部算子。该方法能够快速处理高分辨率图像,同时实现卓越的性能。具体而言,我们利用一种图像自适应的3D LUT,该LUT利用了降采样图像的全局色调特征,同时结合了两种不同的权重融合策略以实现粗略的全局图像增强。为实现此策略,我们设计了一个空间-频率变换器权重预测器,通过利用频率特征有效提取所需的区分性权重。此外,我们应用局部拉普拉斯滤波器来自适应地细化高频分量中的边缘细节。经过对网络结构和变换器模型的精心重新设计,LLF-LUT++不仅在HDR+数据集上实现了PSNR 2.64 dB的提升,而且进一步减少了运行时间,在单GPU上处理4K分辨率图像仅需13毫秒。在两个基准数据集上的大量实验结果进一步表明,所提出的方法与最先进的方法相比具有优越的性能。源代码将在 https://github.com/fengzhang427/LLF-LUT 公开提供。

0
下载
关闭预览

相关内容

Pyramid is a small, fast, down-to-earth Python web application development framework.
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员