With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.
翻译:随着遥感技术的飞速发展,目前很容易获得大量具有相当复杂异质性的地球观测(EO)数据,这些数据数量巨大,具有相当多复杂的处理能力,使研究人员有机会以新的方式处理当前的地球科学应用。随着对EO数据的共同利用,许多关于多式RS数据融合的研究近年来取得了巨大进展,然而,这些开发的传统算法不可避免地满足了业绩瓶颈,因为缺乏全面分析和解释这些极不相同的数据的能力。因此,这种不明显的合成限制进一步引起对具有强大处理能力的替代工具的强烈需求。深层次学习(DL),作为尖端技术,使研究人员有机会以新的方式处理当前的地球科学应用。随着EO数据的共同使用,许多关于多式RS数据融合的研究在最近几年里取得了巨大进展,但与传统方法相比,这些传统算法取得了很大的改进。这一调查的目的是对基于DL的多式RS数据融合进行系统化的概述。更具体地说,关于这个主题的一些基本知识是仍然存在的。随后进行的一项文献调查,目的是分析这个领域的最新的RB-RS-RO-RO-RO-S的深度探测、某些普通的次式数据是目前数据。