The Information Bottleneck (IB) provides an information theoretic principle for representation learning, by retaining all information relevant for predicting label while minimizing the redundancy. Though IB principle has been applied to a wide range of applications, its optimization remains a challenging problem which heavily relies on the accurate estimation of mutual information. In this paper, we present a new strategy, Variational Self-Distillation (VSD), which provides a scalable, flexible and analytic solution to essentially fitting the mutual information but without explicitly estimating it. Under rigorously theoretical guarantee, VSD enables the IB to grasp the intrinsic correlation between representation and label for supervised training. Furthermore, by extending VSD to multi-view learning, we introduce two other strategies, Variational Cross-Distillation (VCD) and Variational Mutual-Learning (VML), which significantly improve the robustness of representation to view-changes by eliminating view-specific and task-irrelevant information. To verify our theoretically grounded strategies, we apply our approaches to cross-modal person Re-ID, and conduct extensive experiments, where the superior performance against state-of-the-art methods are demonstrated. Our intriguing findings highlight the need to rethink the way to estimate mutual


翻译:信息博特内克(IB)为代表性学习提供了一个信息理论原则,它保留了所有与预测标签有关的信息,同时尽量减少冗余。尽管IB原则已应用于广泛的应用,但其优化仍然是一个挑战性问题,严重依赖对相互信息的准确估计。在本文件中,我们提出了一个新的战略,即动态自我蒸馏(VSD),它提供了一种可扩展、灵活、分析的解决方案,基本上适应相互信息,但没有明确估计这些信息。在严格的理论保障下,VSD使IB能够掌握监督培训的代表和标签之间的内在关联。此外,通过将VSD扩大到多视角学习,我们引入了另外两种战略,即动态交叉蒸馏(VCD)和动态相互学习(VML),通过消除特定观点和任务相关的信息,大大提高了代表对变化的稳健性。为了核实我们基于理论的战略,我们运用了跨模式的人再ID,并进行了广泛的实验,在这种实验中,针对州级再思考方法的优异性表现是展示的。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员