We provide a new perspective on the problem how high-level state machine models with abstract actions can be related to low-level models in which these actions are refined by sequences of concrete actions. We describe the connection between high-level and low-level actions using \emph{action codes}, a variation of the prefix codes known from coding theory. For each action code ${\mathcal{R}}$, we introduce a \emph{contraction} operator $\alpha_{\mathcal{R}}$ that turns a low-level model $\mathcal{M}$ into a high-level model, and a \emph{refinement} operator $\rho_{\mathcal{R}}$ that transforms a high-level model $\mathcal{N}$ into a low-level model. We establish a Galois connection $\rho_{\mathcal{R}}(\mathcal{N}) \sqsubseteq \mathcal{M} \Leftrightarrow \mathcal{N} \sqsubseteq \alpha_{\mathcal{R}}(\mathcal{M})$, where $\sqsubseteq$ is the well-known simulation preorder. For conformance, we typically want to obtain an overapproximation of model $\mathcal{M}$. To this end, we also introduce a \emph{concretization} operator $\gamma_{\mathcal{R}}$, which behaves like the refinement operator but adds arbitrary behavior at intermediate points, giving us a second Galois connection $\alpha_{\mathcal{R}}(\mathcal{M}) \sqsubseteq \mathcal{N} \Leftrightarrow \mathcal{M} \sqsubseteq \gamma_{\mathcal{R}}(\mathcal{N})$. Action codes may be used to construct adaptors that translate between concrete and abstract actions during learning and testing of Mealy machines. If Mealy machine $\mathcal{M}$ models a black-box system then $\alpha_{\mathcal{R}}(\mathcal{M})$ describes the behavior that can be observed by a learner/tester that interacts with this system via an adaptor derived from code ${\mathcal{R}}$. Whenever $\alpha_{\mathcal{R}}(\mathcal{M})$ implements (or conforms to) $\mathcal{N}$, we may conclude that $\mathcal{M}$ implements (or conforms to) $\gamma_{{\mathcal{R}}} (\mathcal{N})$.


翻译:我们提供了一个新视角, 问题在于: 具有抽象动作的高级国家机器模型如何与低级模型联系起来 。 我们描述使用\ emph{ 动作代码的高级和低级行动之间的联系。 由编码理论来理解的前缀代码的变异 。 对于每个动作代码 $\ mathcal{ { 美元, 我们引入了一个 Galois 连接 { (mathcal{ N} 运算 $\ 将低级模型 $\ macr{ m} 转化为高级模型。 中度模型= m} 中度模型和低级行动, 将高级模型 $\ macal{ =macal} 引入低级模型 。 我们建立 Galois 连接 $\\\ macal{ (macal{ ) 和 下级动作(macal} 也让 直立市 以 MAr\ a maqral_ a deal)。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
1+阅读 · 2023年3月31日
A Survey on Data Augmentation for Text Classification
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2023年3月31日
Arxiv
1+阅读 · 2023年3月31日
A Survey on Data Augmentation for Text Classification
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员