We provide a new perspective on the problem how high-level state machine models with abstract actions can be related to low-level models in which these actions are refined by sequences of concrete actions. We describe the connection between high-level and low-level actions using \emph{action codes}, a variation of the prefix codes known from coding theory. For each action code ${\mathcal{R}}$, we introduce a \emph{contraction} operator $\alpha_{\mathcal{R}}$ that turns a low-level model $\mathcal{M}$ into a high-level model, and a \emph{refinement} operator $\rho_{\mathcal{R}}$ that transforms a high-level model $\mathcal{N}$ into a low-level model. We establish a Galois connection $\rho_{\mathcal{R}}(\mathcal{N}) \sqsubseteq \mathcal{M} \Leftrightarrow \mathcal{N} \sqsubseteq \alpha_{\mathcal{R}}(\mathcal{M})$, where $\sqsubseteq$ is the well-known simulation preorder. For conformance, we typically want to obtain an overapproximation of model $\mathcal{M}$. To this end, we also introduce a \emph{concretization} operator $\gamma_{\mathcal{R}}$, which behaves like the refinement operator but adds arbitrary behavior at intermediate points, giving us a second Galois connection $\alpha_{\mathcal{R}}(\mathcal{M}) \sqsubseteq \mathcal{N} \Leftrightarrow \mathcal{M} \sqsubseteq \gamma_{\mathcal{R}}(\mathcal{N})$. Action codes may be used to construct adaptors that translate between concrete and abstract actions during learning and testing of Mealy machines. If Mealy machine $\mathcal{M}$ models a black-box system then $\alpha_{\mathcal{R}}(\mathcal{M})$ describes the behavior that can be observed by a learner/tester that interacts with this system via an adaptor derived from code ${\mathcal{R}}$. Whenever $\alpha_{\mathcal{R}}(\mathcal{M})$ implements (or conforms to) $\mathcal{N}$, we may conclude that $\mathcal{M}$ implements (or conforms to) $\gamma_{{\mathcal{R}}} (\mathcal{N})$.
翻译:我们提供了一个新视角, 问题在于: 具有抽象动作的高级国家机器模型如何与低级模型联系起来 。 我们描述使用\ emph{ 动作代码的高级和低级行动之间的联系。 由编码理论来理解的前缀代码的变异 。 对于每个动作代码 $\ mathcal{ { 美元, 我们引入了一个 Galois 连接 { (mathcal{ N} 运算 $\ 将低级模型 $\ macr{ m} 转化为高级模型。 中度模型= m} 中度模型和低级行动, 将高级模型 $\ macal{ =macal} 引入低级模型 。 我们建立 Galois 连接 $\\\ macal{ (macal{ ) 和 下级动作(macal} 也让 直立市 以 MAr\ a maqral_ a deal)。