Implicit Neural Representations (INRs) have emerged in the last few years as a powerful tool to encode continuously a variety of different signals like images, videos, audio and 3D shapes. When applied to 3D shapes, INRs allow to overcome the fragmentation and shortcomings of the popular discrete representations used so far. Yet, considering that INRs consist in neural networks, it is not clear whether and how it may be possible to feed them into deep learning pipelines aimed at solving a downstream task. In this paper, we put forward this research problem and propose inr2vec, a framework that can compute a compact latent representation for an input INR in a single inference pass. We verify that inr2vec can embed effectively the 3D shapes represented by the input INRs and show how the produced embeddings can be fed into deep learning pipelines to solve several tasks by processing exclusively INRs.
翻译:近些年来出现了隐性神经图示(INRs),作为不断对图像、视频、音频和3D形状等各种不同信号进行编码的有力工具。 当应用到 3D 形状时, IRs 能够克服目前使用的流行的离散表示的支离破碎和缺陷。 然而,考虑到IRS 包含在神经网络中,不清楚是否可能以及如何把它们注入旨在解决下游任务的深层学习管道中。 在本文中,我们提出了这一研究问题并提出Inr2vec, 该框架可以计算出输入 INR 在一个单一的推理通过中输入一个紧凑的隐含图示。 我们核实In2vec 能够有效地嵌入输入IRs 所代表的3D 形状, 并展示如何将所生成的嵌入的嵌入式注入到深层学习管道中, 以便通过只处理IRS 来解决若干任务。