In this work we provide new insights into the transformer architecture, and in particular, its best-known variant, BERT. First, we propose a method to measure the degree of non-linearity of different elements of transformers. Next, we focus our investigation on the feed-forward networks (FFN) inside transformers, which contain 2/3 of the model parameters and have so far not received much attention. We find that FFNs are an inefficient yet important architectural element and that they cannot simply be replaced by attention blocks without a degradation in performance. Moreover, we study the interactions between layers in BERT and show that, while the layers exhibit some hierarchical structure, they extract features in a fuzzy manner. Our results suggest that BERT has an inductive bias towards layer commutativity, which we find is mainly due to the skip connections. This provides a justification for the strong performance of recurrent and weight-shared transformer models.


翻译:在这项工作中,我们对变压器结构,特别是其最著名的变压器结构,特别是其最著名的变压器,BERT提供了新的洞察力。首先,我们提出了一个衡量变压器不同成份非线性程度的方法。接下来,我们把调查的重点放在变压器内部的进料推进网络(FFN)上,这些变压器含有2/3的模型参数,迄今没有受到多少关注。我们发现,FFFFF是一个效率低下但重要的建筑元素,不能简单地被关注块所取代,而不出现性能的退化。此外,我们研究了BERT各层之间的相互作用,并表明,虽然这些层展示了某种等级结构,但以模糊的方式提取了特征。我们发现,BERT对层的顺位性存在一种感性偏向性偏向,这主要归因于跳跃式的连接。这为经常式和权重式变压器模型的强劲性能提供了理由。

0
下载
关闭预览

相关内容

BERT全称Bidirectional Encoder Representations from Transformers,是预训练语言表示的方法,可以在大型文本语料库(如维基百科)上训练通用的“语言理解”模型,然后将该模型用于下游NLP任务,比如机器翻译、问答。
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
25+阅读 · 2021年1月29日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
25+阅读 · 2020年10月15日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
BERT大火却不懂Transformer?读这一篇就够了
大数据文摘
11+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Video Swin Transformer
Arxiv
0+阅读 · 2021年6月24日
Arxiv
19+阅读 · 2020年12月23日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
VIP会员
相关VIP内容
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
25+阅读 · 2021年1月29日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
25+阅读 · 2020年10月15日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
BERT大火却不懂Transformer?读这一篇就够了
大数据文摘
11+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员