The sense of touch is fundamental to human dexterity. When mimicked in robotic touch, particularly by use of soft optical tactile sensors, it suffers from distortion due to motion-dependent shear. This complicates tactile tasks like shape reconstruction and exploration that require information about contact geometry. In this work, we pursue a semi-supervised approach to remove shear while preserving contact-only information. We validate our approach by showing a match between the model-generated unsheared images with their counterparts from vertically tapping onto the object. The model-generated unsheared images give faithful reconstruction of contact-geometry otherwise masked by shear, along with robust estimation of object pose then used for sliding exploration and full reconstruction of several planar shapes. We show that our semi-supervised approach achieves comparable performance to its fully supervised counterpart across all validation tasks with an order of magnitude less supervision. The semi-supervised method is thus more computational and labeled sample-efficient. We expect it will have broad applicability to wide range of complex tactile exploration and manipulation tasks performed via a shear-sensitive sense of touch.
翻译:触摸感是人类伸缩度的根本。 当模拟机器人触摸时, 特别是使用软光学触动传感器, 它会因运动依赖剪切而发生扭曲。 这会使形状的重建和探索等需要接触几何信息的触动任务复杂化。 在这项工作中, 我们在保存仅接触信息的同时, 采取半监督的方法去掉剪切, 保存只接触信息 。 我们验证了我们的方法, 在模型生成的未听到图像与垂直抓取对象的对应图像之间显示匹配。 模型生成的未听到图像会忠实地重建由剪切耳遮盖的接触- 大地测量, 并同时对当时用于滑动探索和完全重建若干平面形状的物体进行精确估计 。 我们显示, 我们的半监督方法在所有验证任务中, 都取得了与其完全监督的对等功能相似的性能, 其次等量级监管。 因此, 半超超方法更具有计算性和标签样本效率。 我们期望它能广泛适用于通过切感力执行的复杂触控控控任务。