Representation learning on temporal graphs has drawn considerable research attention owing to its fundamental importance in a wide spectrum of real-world applications. Though a number of studies succeed in obtaining time-dependent representations, it still faces significant challenges. On the one hand, most of the existing methods restrict the embedding space with a certain curvature. However, the underlying geometry in fact shifts among the positive curvature hyperspherical, zero curvature Euclidean and negative curvature hyperbolic spaces in the evolvement over time. On the other hand, these methods usually require abundant labels to learn temporal representations, and thereby notably limit their wide use in the unlabeled graphs of the real applications. To bridge this gap, we make the first attempt to study the problem of self-supervised temporal graph representation learning in the general Riemannian space, supporting the time-varying curvature to shift among hyperspherical, Euclidean and hyperbolic spaces. In this paper, we present a novel self-supervised Riemannian graph neural network (SelfRGNN). Specifically, we design a curvature-varying Riemannian GNN with a theoretically grounded time encoding, and formulate a functional curvature over time to model the evolvement shifting among the positive, zero and negative curvature spaces. To enable the self-supervised learning, we propose a novel reweighting self-contrastive approach, exploring the Riemannian space itself without augmentation, and propose an edge-based self-supervised curvature learning with the Ricci curvature. Extensive experiments show the superiority of SelfRGNN, and moreover, the case study shows the time-varying curvature of temporal graph in reality.
翻译:时间图上的代表学因其在一系列现实应用中的根本重要性而引起了相当的研究关注。 尽管许多研究成功地获得了基于时间的描述, 但它仍然面临着巨大的挑战。 一方面, 大部分现有方法限制嵌入空间, 并带有一定的曲线。 然而, 在积极的曲线性超球性、 零曲线性 Euclidean 和负曲线性超曲线性超曲线空间之间事实上的变化引起了相当的研究关注。 另一方面, 这些方法通常需要大量的标签来学习时间表达, 从而明显限制这些方法在真实应用中无标记的曲线上的广泛使用。 为了缩小这一差距, 我们第一次尝试在一般的里曼空间中研究自我超超曲线的时图代表学问题, 支持在超球性、 Euclidean 和超曲线上层空间之间发生时间变化。 在本文中,我们展示了全新的里曼图形神经神经网络( 自我的自我超曲线性曲线性曲线性曲线性曲线性曲线性曲线性曲线性自我进化自我进化自我进化, 而我们设计了一个正向时间级的曲线性变压性变动的曲线性变压性变压性变压, 。