Representation learning on temporal graphs has drawn considerable research attention owing to its fundamental importance in a wide spectrum of real-world applications. Though a number of studies succeed in obtaining time-dependent representations, it still faces significant challenges. On the one hand, most of the existing methods restrict the embedding space with a certain curvature. However, the underlying geometry in fact shifts among the positive curvature hyperspherical, zero curvature Euclidean and negative curvature hyperbolic spaces in the evolvement over time. On the other hand, these methods usually require abundant labels to learn temporal representations, and thereby notably limit their wide use in the unlabeled graphs of the real applications. To bridge this gap, we make the first attempt to study the problem of self-supervised temporal graph representation learning in the general Riemannian space, supporting the time-varying curvature to shift among hyperspherical, Euclidean and hyperbolic spaces. In this paper, we present a novel self-supervised Riemannian graph neural network (SelfRGNN). Specifically, we design a curvature-varying Riemannian GNN with a theoretically grounded time encoding, and formulate a functional curvature over time to model the evolvement shifting among the positive, zero and negative curvature spaces. To enable the self-supervised learning, we propose a novel reweighting self-contrastive approach, exploring the Riemannian space itself without augmentation, and propose an edge-based self-supervised curvature learning with the Ricci curvature. Extensive experiments show the superiority of SelfRGNN, and moreover, the case study shows the time-varying curvature of temporal graph in reality.


翻译:时间图上的代表学因其在一系列现实应用中的根本重要性而引起了相当的研究关注。 尽管许多研究成功地获得了基于时间的描述, 但它仍然面临着巨大的挑战。 一方面, 大部分现有方法限制嵌入空间, 并带有一定的曲线。 然而, 在积极的曲线性超球性、 零曲线性 Euclidean 和负曲线性超曲线性超曲线空间之间事实上的变化引起了相当的研究关注。 另一方面, 这些方法通常需要大量的标签来学习时间表达, 从而明显限制这些方法在真实应用中无标记的曲线上的广泛使用。 为了缩小这一差距, 我们第一次尝试在一般的里曼空间中研究自我超超曲线的时图代表学问题, 支持在超球性、 Euclidean 和超曲线上层空间之间发生时间变化。 在本文中,我们展示了全新的里曼图形神经神经网络( 自我的自我超曲线性曲线性曲线性曲线性曲线性曲线性曲线性曲线性自我进化自我进化自我进化, 而我们设计了一个正向时间级的曲线性变压性变动的曲线性变压性变压性变压, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
15+阅读 · 2020年2月5日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员