Structural monitoring for complex built environments often suffers from mismatch between design, laboratory testing, and actual built parameters. Additionally, real-world structural identification problems encounter many challenges. For example, the lack of accurate baseline models, high dimensionality, and complex multivariate partial differential equations (PDEs) pose significant difficulties in training and learning conventional data-driven algorithms. This paper explores a new framework, dubbed NeuralSI, for structural identification by augmenting PDEs that govern structural dynamics with neural networks. Our approach seeks to estimate nonlinear parameters from governing equations. We consider the vibration of nonlinear beams with two unknown parameters, one that represents geometric and material variations, and another that captures energy losses in the system mainly through damping. The data for parameter estimation is obtained from a limited set of measurements, which is conducive to applications in structural health monitoring where the exact state of an existing structure is typically unknown and only a limited amount of data samples can be collected in the field. The trained model can also be extrapolated under both standard and extreme conditions using the identified structural parameters. We compare with pure data-driven Neural Networks and other classical Physics-Informed Neural Networks (PINNs). Our approach reduces both interpolation and extrapolation errors in displacement distribution by two to five orders of magnitude over the baselines. Code is available at https://github.com/human-analysis/neural-structural-identification
翻译:此外,现实世界的结构识别问题面临许多挑战,例如,缺乏准确的基线模型、高维度和复杂的多变部分方程(PDEs)在培训和学习传统数据驱动算法方面造成了重大困难。本文探讨了一个新的框架,称为神经系统SI,用于结构性识别,其方法是通过增加管理神经网络结构动态的PDE,加强管理神经网络结构动态的PDE。我们的方法是从治理方程式中估算非线性参数。我们考虑的是非线性线性链束的振动,其中有两个未知参数,一个参数代表几何和物质变化,另一个参数估计系统能源损失主要通过屏障获取。参数估算数据来自有限的一套测量数据,这些数据有助于在结构健康监测中应用现有结构的确切状态,而在实地只能采集数量有限的数据样本。经过培训的模型也可以在标准条件和极端条件下,利用已确定的结构参数进行外推,一种参数代表了两个未知参数,一个参数代表了几何参数和物质变异,另一个参数主要通过屏障来捕捉取系统能源损失。 参数的参数估算数据流数据流数据流/内部结构流流流流流/结构流流流的模型流分级系统流系统,通过系统流系统流系统流系统流系统流系统流系统流压去。