This paper proposes a linear bandit algorithm that is adaptive to environments at two different levels of hierarchy. At the higher level, the proposed algorithm adapts to a variety of types of environments. More precisely, it achieves best-of-three-worlds regret bounds, i.e., of ${O}(\sqrt{T \log T})$ for adversarial environments and of $O(\frac{\log T}{\Delta_{\min}} + \sqrt{\frac{C \log T}{\Delta_{\min}}})$ for stochastic environments with adversarial corruptions, where $T$, $\Delta_{\min}$, and $C$ denote, respectively, the time horizon, the minimum sub-optimality gap, and the total amount of the corruption. Note that polynomial factors in the dimensionality are omitted here. At the lower level, in each of the adversarial and stochastic regimes, the proposed algorithm adapts to certain environmental characteristics, thereby performing better. The proposed algorithm has data-dependent regret bounds that depend on all of the cumulative loss for the optimal action, the total quadratic variation, and the path-length of the loss vector sequence. In addition, for stochastic environments, the proposed algorithm has a variance-adaptive regret bound of $O(\frac{\sigma^2 \log T}{\Delta_{\min}})$ as well, where $\sigma^2$ denotes the maximum variance of the feedback loss. The proposed algorithm is based on the SCRiBLe algorithm. By incorporating into this a new technique we call scaled-up sampling, we obtain high-level adaptability, and by incorporating the technique of optimistic online learning, we obtain low-level adaptability.


翻译:本文建议了一种适合不同等级层次环境的线性土匪算法。 在较高层次, 提议的算法适应了各种类型的环境。 更准确地说, 它可以达到三种世界的最佳遗憾界限, 即: ${O}( sqrt{T\ t\log T}) 美元, 用于对抗环境, 和 $(\\frac\log TunDelta<unk> <unk> +\ sqrt=frac{C\log TunDelda<unk> min} 。 在较高层次, 用于有对抗腐败、 $( $, $, Delta<unk> } $, $, 和 $( C$, ) 最坏的三世界最坏的框框框框框框框。 注意这里忽略了维度的多元因素。 在较低层次, 我们的对抗性和 度制度下, 拟议的算法适应了某些环境特征, 从而表现得更好。 提议的算法有数据- 递增量的轨道, 将技术的累积性变变 。</s>

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
13+阅读 · 2021年3月3日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员