The randomized unbiased estimators of Rhee and Glynn (Operations Research:63(5), 1026-1043, 2015) can be highly efficient at approximating expectations of path functionals associated with stochastic differential equations (SDEs). However, there is a lack of algorithms for calculating the optimal distributions with an infinite horizon. In this article, based on the method of Cui et.al. (Operations Research Letters: 477-484, 2021), we prove that, under mild assumptions, there is a simple representation of the optimal distributions. Then, we develop an adaptive algorithm to compute the optimal distributions with an infinite horizon, which requires only a small amount of computational time in prior estimation. Finally, we provide numerical results to illustrate the efficiency of our adaptive algorithm.
翻译:Rhee 和 Glynn(运筹学:63(5),1026-1043,2015)的随机无偏估计器可以高效地逼近与随机微分方程(SDE)相关的路径函数期望。然而,在具有无限时间范围时,缺乏用于计算最优分布的算法。在本文中,我们基于 Cui 等人的方法(运筹学通讯:477-484,2021),证明了,在温和假设下,最优分布的表示是简单的。然后,我们开发了一种自适应算法,用于计算具有无限时间范围的最优分布,仅需要对先前估计的少量计算时间。最后,我们提供数值结果,以说明自适应算法的效率。