Given a document in a source language, cross-lingual summarization (CLS) aims to generate a summary in a different target language. Recently, the emergence of ChatGPT has attracted wide attention from the computational linguistics community. However, it is not yet known the performance of ChatGPT on CLS. In this report, we empirically use various prompts to guide ChatGPT to perform zero-shot CLS from different paradigms (i.e., end-to-end and pipeline), and provide a preliminary evaluation on its generated summaries.We find that ChatGPT originally prefers to produce lengthy summaries with more detailed information. But with the help of an interactive prompt, ChatGPT can balance between informativeness and conciseness, and significantly improve its CLS performance. Experimental results on three widely-used CLS datasets show that ChatGPT outperforms the advanced GPT 3.5 model (i.e., text-davinci-003). In addition, we provide qualitative case studies to show the superiority of ChatGPT on CLS.
翻译:根据一种源语言的文件,跨语言汇总(CLS)的目的是用不同的目标语言生成摘要。最近,查特格普特的出现吸引了计算语言界的广泛关注,然而,尚不知道查特特特特在CLS上的绩效。在本报告中,我们以经验方式利用各种提示指导查特格普特从不同模式(即端到端和管道)中进行零射的CLS,并对其生成的摘要进行初步评估。我们发现查特格普特最初倾向于用更详细的信息编写长的概要。但是,在互动的及时帮助下,查特格普特可以平衡信息性和简洁性,并显著改进CLS的绩效。三个广泛使用的查特格特特特的实验结果显示,查特格普特比先进的GPT3.5模型(即文本-达文西-003)。此外,我们提供定性案例研究,以显示查特特特特特特在CLS上的优势。</s>