We develop a new framework for embedding joint probability distributions in tensor product reproducing kernel Hilbert spaces (RKHS). Our framework accommodates a low-dimensional, normalized and positive model of a Radon-Nikodym derivative, which we estimate from sample sizes of up to several million data points, alleviating the inherent limitations of RKHS modeling. Well-defined normalized and positive conditional distributions are natural by-products to our approach. The embedding is fast to compute and accommodates learning problems ranging from prediction to classification. Our theoretical findings are supplemented by favorable numerical results.
翻译:我们开发了一个新的框架,将联合概率分布嵌入张量积重现核希尔伯特空间(RKHS)。我们的框架适用于一个低维、归一化和正模的Radon-Nikodym衍生物模型,我们从大约几百万个数据点的样本大小中估计,减轻了RKHS建模的内在限制。我们的方法自然地得出规范化和正条件分布。嵌入快速计算,适用于从预测到分类的学习问题。我们的理论发现得到了有利的数值结果的补充。