Photometric stereo refers to the process to compute the 3D shape of an object using information on illumination and reflectance from several input images from the same point of view. The most often used reflectance model is the Lambertian reflectance, however this does not include specular highlights in input images. In this paper we consider the arising non-linear optimisation problem when employing Blinn-Phong reflectance for modeling specular effects. To this end we focus on the regularising Levenberg-Marquardt scheme. We show how to derive an explicit bound that gives information on the convergence reliability of the method depending on given data, and we show how to gain experimental evidence of numerical correctness of the iteration by making use of the Scherzer condition. The theoretical investigations that are at the heart of this paper are supplemented by some tests with real-world imagery.
翻译:光度立体器指的是使用照明信息来计算物体的 3D 形状的过程, 并使用同一观点的多个输入图像进行反射。 最常用的反射模型是 Lamberti 反射, 但是这不包括输入图像中的视觉亮点。 在本文中, 当使用 Blinn- Phond 反射模型的视觉效果时, 我们考虑产生的非线性优化问题 。 为此, 我们侧重于对 Levenberg- Marquardt 方案进行正规化 。 我们展示了如何获得一个清晰的界限, 以根据特定数据提供该方法的趋同可靠性信息, 我们展示了如何通过使用 Scherzer 状态获得关于迭代的数值正确性的实验性证据 。 本文核心的理论性调查得到了一些真实世界图像的测试的补充 。