To date, query performance prediction (QPP) in the context of content-based image retrieval remains a largely unexplored task, especially in the query-by-example scenario, where the query is an image. To boost the exploration of the QPP task in image retrieval, we propose the first benchmark for image query performance prediction (iQPP). First, we establish a set of four data sets (PASCAL VOC 2012, Caltech-101, ROxford5k and RParis6k) and estimate the ground-truth difficulty of each query as the average precision or the precision@k, using two state-of-the-art image retrieval models. Next, we propose and evaluate novel pre-retrieval and post-retrieval query performance predictors, comparing them with existing or adapted (from text to image) predictors. The empirical results show that most predictors do not generalize across evaluation scenarios. Our comprehensive experiments indicate that iQPP is a challenging benchmark, revealing an important research gap that needs to be addressed in future work. We release our code and data as open source at https://github.com/Eduard6421/iQPP, to foster future research.
翻译:到目前为止,基于内容的图像检索中查询性能预测(QPP)在查询示例场景(其中查询是图像)尤其是一个较少研究的任务。为了促进图像检索中QPP任务的探索,我们提出了第一个图像查询性能预测(iQPP)基准。首先,我们建立了四个数据集(PASCAL VOC 2012、Caltech-101、ROxford5k和RParis6k),并使用两种先进的图像检索模型估计每个查询的难度的基准,即平均精度或精度@ k。接下来,我们提出并评估了新的检索前和检索后的查询性能预测器,并将其与现有或从文本到图像进行适应的预测器进行比较。实证结果表明大多数预测器不适用于跨评估场景的广义情况。我们的全面实验表明,iQPP是一个具有挑战性的基准,揭示了需要在未来工作中解决的重要研究差距。我们将我们的代码和数据作为开源发布在https://github.com/Eduard6421/iQPP上,以促进未来的研究。