Model-free data-driven computational mechanics, first proposed by Kirchdoerfer and Ortiz, replaces phenomenological models with numerical simulations based on sample data sets in strain-stress space. Recent literature extended the approach to inelastic problems using structured data sets, tangent space information, and transition rules. From an application perspective, the coverage of qualified data states and calculating the corresponding tangent space is crucial. In this respect, material symmetry significantly helps to reduce the amount of necessary data. This study applies the data-driven paradigm to elasto-plasticity with isotropic hardening. We formulate our approach employing Haigh-Westergaard coordinates, providing information on the underlying material yield surface. Based on this, we use a combined tension-torsion test to cover the knowledge of the yield surface and a single tensile test to calculate the corresponding tangent space. The resulting data-driven method minimizes the distance over the Haigh-Westergaard space augmented with directions in the tangent space subject to compatibility and equilibrium constraints.


翻译:模型无关的数据驱动计算机力学是基于应变-应力数据集的数值模拟,用于替代基于现象的模型。Kirchdoerfer和Ortiz首次提出了这种方法。最近的文献已经将这种方法扩展到使用结构化数据集、切空间信息和转移规则的非弹性问题。从应用角度来看,覆盖合格数据状态并计算相应的切空间是至关重要的。在这方面,材料对称性极大地有助于减少所需数据的数量。本研究将数据驱动范式应用于各向同性硬化的弹塑性。我们采用Haigh-Westergaard坐标系来构建我们的方法,提供了有关材料屈服面的信息。基于此,我们使用联合张力-扭转试验来覆盖关于屈服面的知识,并使用单轴拉伸试验来计算相应的切空间。结果表明,所得到的数据驱动方法最小化了在Haigh-Westergaard空间中增加切空间方向的距离(同时满足兼容性和平衡约束)。

0
下载
关闭预览

相关内容

通过采集数据(这里的数据必须满足大、全、细、时),将数据进行组织形成信息流,在做决策或者产品、运营等优化时,根据不同需求对信息流进行提炼总结,从而在数据的支撑下或者指导下进行科学的行动叫做数据驱动。
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员