Modern shape design and capture techniques often lead to the geometric data presented in the form of serial rows of data points. In general, the number of data points varies from row to row. Lofted or skinned B-spline surface interpolation is a technique that generates a B-spline surface that passes through these data points precisely. The traditional process often causes a large increase in the number of control points of the resulting B-spline surface. Much of the work to date in mitigating the effects of this increase has been restricted to open section-curves. The lofting of sequential closed contours using the interpolation technique has not been addressed in the existing literature. In this paper, we present two novel conjectures relating to closed B-spline curve interpolation. We derive the equivalent closed B-spline interpolation condition of the well-established Schoenberg-Whitney condition for open B-spline interpolation, a condition that the parameter values and the domain knots should satisfy to guarantee the system matrix is always invertible or full-rank. We then apply the interpolation condition to the problem of lofted B-spline surface interpolation to serial closed contours. The correctness of these conjectures is validated via numerical results and several practical experiments. Github repository https://github.com/ShutaoTang/LBSI-Project
翻译:现代形状设计和捕捉技术往往导致以数据点序列行形式提供的几何数据。 一般来说, 数据点数目各行不同。 低化或皮肤化的 B- spline 表面内插是一个产生B- spline 表面的技术, 精确通过这些数据点。 传统过程往往导致由此形成的 B- spline 表面控制点数目的大幅增加。 减轻这一增长影响的大部分工作一直局限于开放的区划。 现有文献没有涉及使用内插技术的连续封闭轮廓的倾斜。 在此文件中,我们提出了与封闭的 B- spline 曲线内插图相关的两个新颖的推测。 我们从中推算出一个相当封闭的 Schoenberg- Whitney 条件。 开放的 B- 线内插图内插, 参数值和域内结应该满足的保证系统矩阵总可倒置或全置。 我们随后将封闭性 B- L- 软性 内嵌 内嵌 的内嵌结果 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 等 等 的内 的内 等 等 等 的 IM压 度 IM压 质 质 质 度 根基 质 质 质 质 质 质 质 质 质 质 质 质 质 质 质 质 根 质 质 质 质 质 质 质 质 质 。