With the recent increase in intelligent CCTVs for visual surveillance, a new image degradation that integrates resolution conversion and synthetic rain models is required. For example, in heavy rain, face images captured by CCTV from a distance have significant deterioration in both visibility and resolution. Unlike traditional image degradation models (IDM), such as rain removal and superresolution, this study addresses a new IDM referred to as a scale-aware heavy rain model and proposes a method for restoring high-resolution face images (HR-FIs) from low-resolution heavy rain face images (LRHR-FI). To this end, a 2-stage network is presented. The first stage generates low-resolution face images (LR-FIs), from which heavy rain has been removed from the LRHR-FIs to improve visibility. To realize this, an interpretable IDM-based network is constructed to predict physical parameters, such as rain streaks, transmission maps, and atmospheric light. In addition, the image reconstruction loss is evaluated to enhance the estimates of the physical parameters. For the second stage, which aims to reconstruct the HR-FIs from the LR-FIs outputted in the first stage, facial component guided adversarial learning (FCGAL) is applied to boost facial structure expressions. To focus on informative facial features and reinforce the authenticity of facial components, such as the eyes and nose, a face-parsing-guided generator and facial local discriminators are designed for FCGAL. The experimental results verify that the proposed approach based on physical-based network design and FCGAL can remove heavy rain and increase the resolution and visibility simultaneously. Moreover, the proposed heavy-rain face image restoration outperforms state-of-the-art models of heavy rain removal, image-to-image translation, and superresolution.


翻译:随着视觉监视智能闭路电视的最近增加,需要一个新的图像降解,将分辨率转换和合成雨模型结合起来。例如,在大雨中,由闭路电视从远处拍摄的面部图像在可见度和分辨率方面都有显著的恶化。与传统的图像降解模型(IDM)不同,如雨水清除和超分辨率,本研究涉及一种新的IMD,称为有比例觉察力的重雨模型,并提出了从低分辨率重雨脸图像(HR-FIS)中恢复高分辨率脸部图像(HR-FIS)的方法。为此,介绍了一个两阶段的网络。第一阶段是生成低分辨率脸部图像(LRR-FIS),从中移除了大雨,从LHR-FIDS-FIDS到提高可见度。为了实现这一点,一个可解释的IMDM网络网络网络(IMDM)用来预测物理参数,如雨线、传输图示图示和大气光等。此外,对图像重建损失进行评估,以便提高物理参数的估计数。在第二阶段,目的是将HR-FA模型和在第一阶段的表面图像模型中进行输出和图像转换。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员