This paper presents an alternative generator architecture for image generation, having a novel information feedback system. Contrary to conventional methods in which the latent space unilaterally affects the feature space in the generator, the proposed method trains not only the feature space but also the latent one by interchanging their information. To this end, we introduce a novel module, called information feedback (IF) block, which jointly updates the latent and feature spaces. To show the superiority of the proposed method, we present extensive experiments on various datasets including subsets of LSUN and FFHQ. Experimental results reveal that the proposed method can dramatically improve the image generation performance, in terms of Frechet inception distance (FID), kernel inception distance (KID), and Precision and Recall (P & R).
翻译:本文为图像生成提供了一个替代的生成器结构,拥有一个新的信息反馈系统。与潜伏空间单方面影响生成器的地物空间的传统方法相反,拟议方法不仅通过互换信息来培训地物空间,而且还通过互换信息来培训潜质空间。为此,我们引入了一个名为信息反馈块的新模块,称为信息反馈块,共同更新潜在空间和地物空间。为了显示拟议方法的优越性,我们介绍了关于各种数据集的广泛实验,包括LSUN和FFHQ子集。 实验结果表明,拟议方法可以大幅改善图像生成的性能,包括Frechet初始距离(FID)、内核初始距离(KID)和精度和回射(P & R)等。