Image generation and image completion are rapidly evolving fields, thanks to machine learning algorithms that are able to realistically replace missing pixels. However, generating large high resolution images, with a large level of details, presents important computational challenges. In this work, we formulate the image generation task as completion of an image where one out of three corners is missing. We then extend this approach to iteratively build larger images with the same level of detail. Our goal is to obtain a scalable methodology to generate high resolution samples typically found in satellite imagery data sets. We introduce a conditional progressive Generative Adversarial Networks (GAN), that generates the missing tile in an image, using as input three initial adjacent tiles encoded in a latent vector by a Wasserstein auto-encoder. We focus on a set of images used by the United Nations Satellite Centre (UNOSAT) to train flood detection tools, and validate the quality of synthetic images in a realistic setup.
翻译:由于机器学习算法能够现实地取代缺失像素,图像的生成和图像完成是迅速演变的字段。然而,生成大型高分辨率图像,并具有大量细节,这带来了重要的计算挑战。在这项工作中,我们将图像生成任务设计为完成一个图像,其中每三个角落中就有一个缺失一个的图像。然后,我们推广这一方法,以同样的详细程度迭代构建更大的图像。我们的目标是获得一种可缩放的方法,以生成在卫星图像数据集中常见的高分辨率样本。我们引入了一种有条件的渐进式基因反versarial网络(GAN),在图像中生成缺失的瓷砖,使用瓦瑟斯坦自动编码器在潜向量中编码的三个初始相邻的瓷砖作为投入。我们侧重于联合国卫星中心(UNOSAT)用来培训洪水探测工具的一套图像,并在一个现实的设置中验证合成图像的质量。