Building upon recent work by the author, we prove that multivariate integration in the following subspace of the Wiener algebra over $[0,1)^d$ is strongly polynomially tractable: \[ F_d:=\left\{ f\in C([0,1)^d)\:\middle| \: \|f\|:=\sum_{\boldsymbol{k}\in \mathbb{Z}^{d}}|\hat{f}(\boldsymbol{k})|\max\left(\mathrm{width}(\mathrm{supp}(\boldsymbol{k})),\min_{j\in \mathrm{supp}(\boldsymbol{k})}\log |k_j|\right)<\infty \right\},\] with $\hat{f}(\boldsymbol{k})$ being the $\boldsymbol{k}$-th Fourier coefficient of $f$, $\mathrm{supp}(\boldsymbol{k}):=\{j\in \{1,\ldots,d\}\mid k_j\neq 0\}$, and $\mathrm{width}: 2^{\{1,\ldots,d\}}\to \{1,\ldots,d\}$ being defined by \[ \mathrm{width}(u):=\max_{j\in u}j-\min_{j\in u}j+1,\] for non-empty subset $u\subseteq \{1,\ldots,d\}$ and $\mathrm{width}(\emptyset):=1$. Strong polynomial tractability is achieved by an explicit quasi-Monte Carlo rule using a multiset union of Korobov's $p$-sets. We also show that, if we replace $\mathrm{width}(\mathrm{supp}(\boldsymbol{k}))$ with 1 for all $\boldsymbol{k}\in \mathbb{Z}^d$ in the above definition of norm, multivariate integration is polynomially tractable but not strongly polynomially tractable.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
69+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
121+阅读 · 2020年11月20日
【干货书】金融数学概念和计算方法的导论,290页pdf
专知会员服务
57+阅读 · 2020年11月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
谷歌足球游戏环境使用介绍
CreateAMind
31+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月24日
Arxiv
0+阅读 · 2023年7月23日
Arxiv
0+阅读 · 2023年7月21日
Arxiv
0+阅读 · 2023年7月19日
VIP会员
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
31+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员