For any particular class of graphs, algorithms for computational problems restricted to the class often rely on structural properties that depend on the specific problem at hand. This begs the question if a large set of such results can be explained by some common problem conditions. We propose such conditions for $HH$-subgraph-free graphs. For a set of graphs $HH$, a graph $G$ is $HH$-subgraph-free if $G$ does not contain any of graph from $H$ as a subgraph. Our conditions are easy to state. A graph problem must be efficiently solvable on graphs of bounded treewidth, computationally hard on subcubic graphs, and computational hardness must be preserved under edge subdivision of subcubic graphs. Our meta-classification says that if a graph problem satisfies all three conditions, then for every finite set $HH$, it is ``efficiently solvable'' on $HH$-subgraph-free graphs if $HH$ contains a disjoint union of one or more paths and subdivided claws, and is ``computationally hard'' otherwise. We illustrate the broad applicability of our meta-classification by obtaining a dichotomy between polynomial-time solvability and NP-completeness for many well-known partitioning, covering and packing problems, network design problems and width parameter problems. For other problems, we obtain a dichotomy between almost-linear-time solvability and having no subquadratic-time algorithm (conditioned on some hardness hypotheses). The proposed framework thus gives a simple pathway to determine the complexity of graph problems on $HH$-subgraph-free graphs. This is confirmed even more by the fact that along the way, we uncover and resolve several open questions from the literature.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员