For any particular class of graphs, algorithms for computational problems restricted to the class often rely on structural properties that depend on the specific problem at hand. This begs the question if a large set of such results can be explained by some common problem conditions. We propose such conditions for $HH$-subgraph-free graphs. For a set of graphs $HH$, a graph $G$ is $HH$-subgraph-free if $G$ does not contain any of graph from $H$ as a subgraph. Our conditions are easy to state. A graph problem must be efficiently solvable on graphs of bounded treewidth, computationally hard on subcubic graphs, and computational hardness must be preserved under edge subdivision of subcubic graphs. Our meta-classification says that if a graph problem satisfies all three conditions, then for every finite set $HH$, it is ``efficiently solvable'' on $HH$-subgraph-free graphs if $HH$ contains a disjoint union of one or more paths and subdivided claws, and is ``computationally hard'' otherwise. We illustrate the broad applicability of our meta-classification by obtaining a dichotomy between polynomial-time solvability and NP-completeness for many well-known partitioning, covering and packing problems, network design problems and width parameter problems. For other problems, we obtain a dichotomy between almost-linear-time solvability and having no subquadratic-time algorithm (conditioned on some hardness hypotheses). The proposed framework thus gives a simple pathway to determine the complexity of graph problems on $HH$-subgraph-free graphs. This is confirmed even more by the fact that along the way, we uncover and resolve several open questions from the literature.
翻译:暂无翻译