Given an unknown dynamical system, what is the minimum number of samples needed for effective learning of its governing laws and accurate prediction of its future evolution behavior, and how to select these critical samples? In this work, we propose to explore this problem based on a design approach. Starting from a small initial set of samples, we adaptively discover critical samples to achieve increasingly accurate learning of the system evolution. One central challenge here is that we do not know the network modeling error since the ground-truth system state is unknown, which is however needed for critical sampling. To address this challenge, we introduce a multi-step reciprocal prediction network where forward and backward evolution networks are designed to learn the temporal evolution behavior in the forward and backward time directions, respectively. Very interestingly, we find that the desired network modeling error is highly correlated with the multi-step reciprocal prediction error, which can be directly computed from the current system state. This allows us to perform a dynamic selection of critical samples from regions with high network modeling errors for dynamical systems. Additionally, a joint spatial-temporal evolution network is introduced which incorporates spatial dynamics modeling into the temporal evolution prediction for robust learning of the system evolution operator with few samples. Our extensive experimental results demonstrate that our proposed method is able to dramatically reduce the number of samples needed for effective learning and accurate prediction of evolution behaviors of unknown dynamical systems by up to hundreds of times.


翻译:给定一个未知的动态系统,有效地学习它的控制规律和准确预测其未来演化行为所需的最小样本量是多少?如何选择这些关键样本?本文提出了一个设计方法,从一个小的初始样本集开始,自适应地发现关键样本,以实现对系统演化越来越准确的学习。其中一个中心挑战是,由于未知基准真实系统状态,我们不知道网络建模误差,但这是进行关键采样所必需的。为了解决这个挑战,我们引入了一个多步互推预测网络,其中前向和后向进化网络分别设计为学习向前和向后时间方向的时间演化行为。有趣的是,我们发现所需的网络建模误差与多步互推预测误差高度相关,可以直接从当前系统状态计算得出。这使我们能够从高网络建模误差的区域进行动态选择关键样本。此外,还引入了一个联合空间和时间演化网络,将空间动态建模融入到时间演化预测中,以少量样本实现系统演化算子的强健学习。广泛的实验结果表明,我们提出的方法能够将有效学习和准确预测未知动态系统演化行为所需的样本数量大幅降低,高达数百倍。

0
下载
关闭预览

相关内容

【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
强化学习初探 - 从多臂老虎机问题说起
专知
10+阅读 · 2018年4月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
强化学习初探 - 从多臂老虎机问题说起
专知
10+阅读 · 2018年4月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员