In this paper we develop a new model for deep image clustering, using convolutional neural networks and tensor kernels. The proposed Deep Tensor Kernel Clustering (DTKC) consists of a convolutional neural network (CNN), which is trained to reflect a common cluster structure at the output of its intermediate layers. Encouraging a consistent cluster structure throughout the network has the potential to guide it towards meaningful clusters, even though these clusters might appear to be nonlinear in the input space. The cluster structure is enforced through the idea of unsupervised companion objectives, where separate loss functions are attached to layers in the network. These unsupervised companion objectives are constructed based on a proposed generalization of the Cauchy-Schwarz (CS) divergence, from vectors to tensors of arbitrary rank. Generalizing the CS divergence to tensor-valued data is a crucial step, due to the tensorial nature of the intermediate representations in the CNN. Several experiments are conducted to thoroughly assess the performance of the proposed DTKC model. The results indicate that the model outperforms, or performs comparable to, a wide range of baseline algorithms. We also empirically demonstrate that our model does not suffer from objective function mismatch, which can be a problematic artifact in autoencoder-based clustering models.


翻译:在本文中,我们开发了一个新的深图像集成模式,使用神经神经网络和振动内核。提议的深天内心聚集(DTKC)包括一个革命性神经网络(CNN),经过培训,能够在中间层输出时反映一个共同的群集结构。鼓励整个网络有一个一致的群集结构,有潜力指导它走向有意义的群集,尽管这些群集在输入空间中似乎是非线性的。群集结构是通过未受监督的同伴目标的构想而实施的,其中将不同的损失功能附在网络的层上。这些未受监督的伴生目标建立在拟议的Caugus-Schwarz(CS)差异的概括化基础上,从矢量到任意级的十分点。由于CNN的中间表达方式具有高压性质,将CS差异化为具有关键意义。进行了一些实验,以彻底评估拟议的DKC模型的性能。结果显示,模型的外形形或运行可与CS-S-S-S-S-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-IAR-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-不具有一种不具有一种不具有一种不具有一种不具有有一定的、、有一定的、、、、、、不具有不具有有问题性基-的模型的模型的、不具有有问题性模型的模型。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
7+阅读 · 2018年11月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员