The ability to detect anomalies in time series is considered highly valuable in numerous application domains. The sequential nature of time series objects is responsible for an additional feature complexity, ultimately requiring specialized approaches in order to solve the task. Essential characteristics of time series, situated outside the time domain, are often difficult to capture with state-of-the-art anomaly detection methods when no transformations have been applied to the time series. Inspired by the success of deep learning methods in computer vision, several studies have proposed transforming time series into image-like representations, used as inputs for deep learning models, and have led to very promising results in classification tasks. In this paper, we first review the signal to image encoding approaches found in the literature. Second, we propose modifications to some of their original formulations to make them more robust to the variability in large datasets. Third, we compare them on the basis of a common unsupervised task to demonstrate how the choice of the encoding can impact the results when used in the same deep learning architecture. We thus provide a comparison between six encoding algorithms with and without the proposed modifications. The selected encoding methods are Gramian Angular Field, Markov Transition Field, recurrence plot, grey scale encoding, spectrogram, and scalogram. We also compare the results achieved with the raw signal used as input for another deep learning model. We demonstrate that some encodings have a competitive advantage and might be worth considering within a deep learning framework. The comparison is performed on a dataset collected and released by Airbus SAS, containing highly complex vibration measurements from real helicopter flight tests. The different encodings provide competitive results for anomaly detection.


翻译:在许多应用领域,发现时间序列异常的能力被认为是非常宝贵的。时间序列对象的顺序性质导致额外的特征复杂性,最终需要专门的方法才能完成任务。时间序列的基本特征位于时间域以外,在没有对时间序列进行转换的情况下,往往很难用最先进的异常检测方法来捕捉。由于计算机视觉深层学习方法的成功,一些研究建议将时间序列转化为图像相似的表达方式,用作深层次学习模型的投入,并导致分类任务中非常有希望的结果。在本文件中,我们首先审查文献中发现的图像编码方法的信号。第二,我们提议修改这些序列的一些原始形状,使之更能适应大型数据集的变异性。第三,我们根据一项共同的、不受监督的任务对它们进行比较,以表明在使用同一深层次学习模型时,编码的选择会如何影响结果。因此,我们比较了六种高层次的编码算法和拟议的修改结果。选定的编码方法是格莱米亚、马克夫·特洛夫·德列夫·德列夫·德列斯列夫·德列夫·德列斯列斯·斯韦尔德罗·斯·斯·斯韦尔格勒·斯洛·斯维勒·斯洛·斯维勒·斯维勒(我们用了一个原始学习模型) 将进行一项原始的升级的比较。我们用一个原始的比较,用来进行了另一个的图表,用来进行更精确和深层的升级的比较。我们使用的系统。我们用到一个原始的系统。我们方的图表,用来用来用来用来进行更精确的比较。我们方的比较,用来在深度的顺序和深层和深层的顺序图。我们方程式,用来进行更精确的比较。我们的比较,用来进行更深层的比较。我们用来进行更精确的比较。我们用的方法是用来进行深度的比较。我们用来进行更精确的比较。我们用的方法,用的方法,我们用的方法,用的方法,我们用的方法,用的方法,用的方法,用来的方法,用来进行。我们的比较,用的方法,用。我们用。我们用。我们用的方法,我们用的方法,我们用的方法,用来的比较,用来的比较。我们用的方法,用来在深度的比较。我们用的方法可以用来用来在深度的比较。我们用来比较。我们用的方法,用来比较,用来比较。我们的比的比较,用的方法是

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
310+阅读 · 2020年11月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
0+阅读 · 2021年3月5日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员