Graph neural networks (GNNs) have recently demonstrated significant success. Active learning for GNNs aims to query the valuable samples from the unlabeled data for annotation to maximize the GNNs' performance at a low cost. However, most existing methods for reinforced active learning in GNNs may lead to a highly imbalanced class distribution, especially in highly skewed class scenarios. This further adversely affects the classification performance. To tackle this issue, in this paper, we propose a novel reinforced class-balanced active learning framework for GNNs, namely, GraphCBAL. It learns an optimal policy to acquire class-balanced and informative nodes for annotation, maximizing the performance of GNNs trained with selected labeled nodes. GraphCBAL designs class-balance-aware states, as well as a reward function that achieves trade-off between model performance and class balance. We further upgrade GraphCBAL to GraphCBAL++ by introducing a punishment mechanism to obtain a more class-balanced labeled set. Extensive experiments on multiple datasets demonstrate the effectiveness of the proposed approaches, achieving superior performance over state-of-the-art baselines. In particular, our methods can strike the balance between classification results and class balance.
翻译:暂无翻译