Fully unsupervised 3D representation learning has gained attention owing to its advantages in data collection. A successful approach involves a viewpoint-aware approach that learns an image distribution based on generative models (e.g., generative adversarial networks (GANs)) while generating various view images based on 3D-aware models (e.g., neural radiance fields (NeRFs)). However, they require images with various views for training, and consequently, their application to datasets with few or limited viewpoints remains a challenge. As a complementary approach, an aperture rendering GAN (AR-GAN) that employs a defocus cue was proposed. However, an AR-GAN is a CNN-based model and represents a defocus independently from a viewpoint change despite its high correlation, which is one of the reasons for its performance. As an alternative to an AR-GAN, we propose an aperture rendering NeRF (AR-NeRF), which can utilize viewpoint and defocus cues in a unified manner by representing both factors in a common ray-tracing framework. Moreover, to learn defocus-aware and defocus-independent representations in a disentangled manner, we propose aperture randomized training, for which we learn to generate images while randomizing the aperture size and latent codes independently. During our experiments, we applied AR-NeRF to various natural image datasets, including flower, bird, and face images, the results of which demonstrate the utility of AR-NeRF for unsupervised learning of the depth and defocus effects.
翻译:由于在数据收集方面具有优势,完全不受监督的3D代表性学习因其在数据收集方面的优势而得到关注。一个成功的方法涉及一种视觉认知方法,即学习基于基因模型的图像分布(例如基因对抗网络(GANs)),同时根据3D-视觉模型(例如神经光谱场(NeRFs))生成各种视觉图像。然而,它们需要具有各种观点的图像来进行培训,因此,在以很少或有限观点对数据集的应用方面,它们仍然是一项挑战。作为一种补充方法,提出了利用脱焦信号的GAN(AR-GAN)孔径转换方法。然而,AR-GAN是一种基于CNNN的模型,它代表一种独立于视觉变化的图像分布,尽管这是其高相关性的原因之一。作为AR-GAN的一种替代方法,我们提议以孔径转换方式将NERF(AR-NERF)用于以统一的方式利用观点和偏移位信号,在共同的射线定位框架中代表两种因素。此外,在进行我们进行不定位、直观和直角图像的模拟期间,包括我们进行不直观和直观的图像的直观、直观、直观、直观和直观、我们进行我们为直观、直观、我们为直观、直观、直观的图像的图像的图像的模拟的模拟的模拟的模拟的模拟、我们在进行我们进行我们为的、直观和直观、直观的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟中,同时进行我们为我们学习的、我们以解的、直观和直观和直观的、直观的、直观的图像的、我们在解的、我们用的方法上、我们所的、我们以解的、我们所的、我们为的、我们所的直观和直观和直方的、我们为的解的、我们以的直观和直观的解的、直观的演、我们在解的解的、我们在解的、我们用、我们在解的解的、我们用、我们所的、我们以的、直观和直观和直方的直观的、我们以的解的演的演的演的、我们的、我们的演的演的