We introduce a method to successively locate equilibria (steady states) of dynamical systems on Riemannian manifolds. The manifolds need not be characterized by an atlas or by the zeros of a smooth map. Instead, they can be defined by point-clouds and sampled as needed through an iterative process. If the manifold is an Euclidean space, our method follows isoclines, curves along which the direction of the vector field $X$ is constant. For a generic vector field $X$, isoclines are smooth curves and every equilibrium is a limit point of isoclines. We generalize the definition of isoclines to Riemannian manifolds through the use of parallel transport: generalized isoclines are curves along which the directions of $X$ are parallel transports of each other. As in the Euclidean case, generalized isoclines of generic vector fields $X$ are smooth curves that connect equilibria of $X$. Our work is motivated by computational statistical mechanics, specifically high dimensional (stochastic) differential equations that model the dynamics of molecular systems. Often, these dynamics concentrate near low-dimensional manifolds and have transitions (sadddle points with a single unstable direction) between metastable equilibria We employ iteratively sampled data and isoclines to locate these saddle points. Coupling a black-box sampling scheme (e.g., Markov chain Monte Carlo) with manifold learning techniques (diffusion maps in the case presented here), we show that our method reliably locates equilibria of $X$.
翻译:我们引入了一种在里曼尼方块上依次定位动态系统的平流系统的方法( 稳定状态 ) 。 元件不需要用地图或平滑地图的零点来描述。 相反, 它们可以通过点球来定义, 并通过迭接过程根据需要进行取样。 如果元件是一个欧几里德空间, 我们的方法遵循的是等离线, 矢量字段方向的曲线是恒定的。 对于普通矢量字段来说, 美元x美元, 等离线是平滑的曲线, 每个平衡是等离线的极限点。 我们通过使用平行运输将等离线定义到里曼方块: 普通的等离线是曲线, 并且根据每平偏移方向, 美元是相平行的。 在 Eucloidean 案中, 通用矢量字段的等离线是平坦的曲线( 我们这里的正平流线与美元等离差的平流曲线) 。 我们的工作受到计算统计机制的驱动, 特别是高度的平流( 平流) 和 司多式的平流的平流的平流数据动态 。 这些直径的平流 的平流 的平流- 和 的平流 的平流 直径的平流 直径的平流的平流 。