Bidirectional motion planning approaches decrease planning time, on average, compared to their unidirectional counterparts. In single-query feasible motion planning, using bidirectional search to find a continuous motion plan requires an edge connection between the forward and reverse search trees. Such a tree-tree connection requires solving a two-point Boundary Value Problem (BVP). However, a two-point BVP solution can be difficult or impossible to calculate for many systems. We present a novel bidirectional search strategy that does not require solving the two-point BVP. Instead of connecting the forward and reverse trees directly, the reverse tree's cost information is used as a guiding heuristic for the forward search. This enables the forward search to quickly converge to a feasible solution without solving the two-point BVP. We propose two new algorithms (GBRRT and GABRRT) that use this strategy and run multiple software simulations using multiple dynamical systems and real-world hardware experiments to show that our algorithms perform on-par or better than existing state-of-the-art methods in quickly finding an initial feasible solution.


翻译:双向运动规划方法平均比单向运动规划减少规划时间。 在单向可行的运动规划中,使用双向搜索来寻找连续运动计划需要前方和反向搜索树之间的边缘连接。 这种树树连接需要解决两点边界值问题。 但是,对于许多系统来说,双点BVP解决方案可能很难或无法计算。 我们提出了一个新的双向双向搜索战略,不需要解决双点BVP。 反向树的成本信息不是直接连接前方树和反向树,而是用来指导前方搜索。 这使得前向搜索能够快速汇集到可行的解决方案,而不会解决双点BVP。 我们提出两种新的算法(GBRRT和GABRRT),使用多点动态系统和现实世界硬件实验来使用这一战略并运行多个软件模拟,以显示我们的算法在快速找到初步可行解决方案方面,其效果或优于现有状态方法。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月22日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员