We describe some pseudorandom properties of binary linear codes achieving capacity on the binary erasure channel under bit-MAP decoding (as shown in Kudekar et al this includes doubly transitive codes and, in particular, Reed-Muller codes). We show that for all integer $q \ge 2$ the $\ell_q$ norm of the characteristic function of such 'pseudorandom' code decreases as fast as that of any code of the same rate (and equally fast as that of a random code) under the action of the noise operator. In information-theoretic terms this means that the $q^{th}$ R\'enyi entropy of this code increases as fast as possible over the binary symmetric channel. In particular (taking $q = \infty$) this shows that such codes have the smallest asymptotic undetected error probability (equal to that of a random code) over the BSC, for a certain range of parameters. We also study the number of times a certain local pattern, a 'rhombic' $4$-tuple of codewords, appears in a linear code, and show that for a certain range of parameters this number for pseudorandom codes is similar to that for a random code.
翻译:我们描述在Bit-MAP解码(如Kudekar等人所显示的)下在二进制消化频道上实现能力的二进制线性代码的一些假冒特性(如Bit-MAP解码(如Kudekar等人所显示的),这包括双重中转代码,特别是Reed-Muller代码。我们显示,对于所有整数$q\ge 2美元,这种“假体多兰多姆”代码特征函数的典型值的$@ell_q$标准值下降速度与在噪音操作下相同速率(和随机代码)的任何代码(与随机代码的概率)的概率一样快。在信息理论术语中,这意味着该代码的R\ enyi 值越快增加越快。 特别是( 以$= =\ infty $为单位) 。 这表明这种代码中最小的未探测性误差概率( 相当于随机代码) 与BSC 的参数一样。 我们还研究某种本地模式的倍数, 一个“rombic-eny ” 参数显示该代码的任意范围。