Dimension reduction is an important tool for analyzing high-dimensional data. The predictor envelope is a method of dimension reduction for regression that assumes certain linear combinations of the predictors are immaterial to the regression. The method can result in substantial gains in estimation efficiency and prediction accuracy over traditional maximum likelihood and least squares estimates. While predictor envelopes have been developed and studied for independent data, no work has been done adapting predictor envelopes to spatial data. In this work, the predictor envelope is adapted to a popular spatial model to form the spatial predictor envelope (SPE). Maximum likelihood estimates for the SPE are derived, along with asymptotic distributions for the estimates given certain assumptions, showing the SPE estimates to be asymptotically more efficient than estimates of the original spatial model. The effectiveness of the proposed model is illustrated through simulation studies and the analysis of a geo-chemical data set.


翻译:减少尺寸是分析高维数据的一个重要工具。预测信封是回归的维度减少方法,它假定预测器的某些线性组合与回归无关。该方法可大大提高对传统最大可能性和最小方形估计数的估算效率和预测准确性。虽然为独立数据开发了预测信封并进行了研究,但没有进行使预测信封与空间数据相适应的工作。在这项工作中,预测信封适应流行的空间空间模型以形成空间预测信封(SPE) 。 SPE的最大可能性估计数是连同某些假设的估计数的无症状分布一起得出的,表明SPE估计数比原始空间模型的估计数要简单有效。通过模拟研究和对地球化学数据集的分析来说明拟议模型的有效性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员