项目名称: 碳纤维织物增强复合材料中空结构的低速冲击损伤机理研究

项目编号: No.51205422

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 机械工程学科

项目作者: 刘强

作者单位: 中山大学

项目金额: 26万元

中文摘要: 轻量化是电动汽车产业化的关键技术之一,碳纤维织物增强复合材料能有效实现电动汽车结构轻量化,然而对其冲击损伤机理和碰撞安全性认识尚不充分,影响其推广应用。项目拟通过试验研究,掌握碳纤维织物增强复合材料二通和三通基础结构的冲击性能和剩余强度规律;通过细观力学有限元分析,建立能够综合考虑织物材料纤维、树脂和界面破坏的三维精细化损伤演化模型;采用有限元方法结合二次开发,开展复杂车身结构的多尺度一致性损伤演化分析方法研究,实现整体结构破坏区域损伤程度的高效预测;结合结构设计试验和仿真计算,揭示结构参数对损伤演化的影响规律。本研究成果对完善增强复合材料结构(以往多为层合板)的损伤机理,建全复杂结构损伤分析方法,指导轻量化结构设计具有较高的学术价值和显著的实践意义。

中文关键词: 碳纤维增强复合材料;中空结构;低速冲击损伤;轻量化;

英文摘要: Lightweight is one of main techniques for the industrialization of electric vehicles. The carbon textile fiber reinforced plastic material(CFRP) can achieve the lightweight of electric vehicle effectively, however the investigations on the impact mechanism and safe performance of structures made of CFRP are not sufficient, and these limit the application of them. Firstly, the damage analysis and residual strength of rectangular tubes and T-shape tubes made of CFRP under low velocity impact tests are investigated; Secondly, a three-dimension refined simulation model is developed to predict the damage behavior of fiber, resin and interfaces, which is compared with experimental results; Thirdly, the multiscale modeling and damage analysis are applied on complex electric vehicle structure in order to improve the accuracy and efficiency of the failure degree prediction inside the impact zone; Finally, the relationship between damage evolution and structure parameters is obtained combining structural design tests and simulation analysis. The investigation is useful for expanding the damage mechanism of hollow structure made of CFPR under low velocity impact, also developing an effective multiscale damage analysis method for complex structure, which will play a key role in practical lightweight structural design.

英文关键词: Carbon fiber reinforced plastic;Hollow structure;Low velocity impact damage;Lightweight;

成为VIP会员查看完整内容
0

相关内容

【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
17+阅读 · 2022年4月25日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
24+阅读 · 2021年8月1日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
17+阅读 · 2020年10月18日
【ACMMM2020-北航】协作双路径度量的小样本学习
专知会员服务
29+阅读 · 2020年8月11日
「深度神经网络 FPGA 」最新2022研究综述
专知
3+阅读 · 2022年3月26日
【预告】CSIG图像图形中国行将于12月27日在海南大学举办
中国图象图形学学会CSIG
0+阅读 · 2021年12月22日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
22+阅读 · 2018年2月14日
小贴士
相关主题
相关VIP内容
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
17+阅读 · 2022年4月25日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
24+阅读 · 2021年8月1日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
17+阅读 · 2020年10月18日
【ACMMM2020-北航】协作双路径度量的小样本学习
专知会员服务
29+阅读 · 2020年8月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员