Formalised libraries of combinatorial mathematics have rapidly expanded over the last five years, but few use one of the most important tools: probability. How can often intuitive probabilistic arguments on the existence of combinatorial structures, such as hypergraphs, be translated into a formal text? We present a modular framework using locales in Isabelle/HOL to formalise such probabilistic proofs, including the basic existence method and first formalisation of the Lov\'asz local lemma, a fundamental result in probability. The formalisation focuses on general, reusable formal probabilistic lemmas for combinatorial structures, and highlights several notable gaps in typical intuitive probabilistic reasoning on paper. The applicability of the techniques is demonstrated through the formalisation of several classic lemmas on the existence of hypergraphs with certain colourings.
翻译:暂无翻译