We propose a new joint mean and correlation regression model for correlated multivariate discrete responses, that simultaneously regresses the mean of each response against a set of covariates, and the correlations between responses against a set of similarity/distance measures. A set of joint estimating equations are formulated to construct an estimator of both the mean regression coefficients and the correlation regression parameters. Under a general setting where the number of responses can tend to infinity, the joint estimator is demonstrated to be consistent and asymptotically normally distributed, with differing rates of convergence due to the mean regression coefficients being heterogeneous across responses. An iterative estimation procedure is developed to obtain parameter estimates in the required, constrained parameter space. We apply the proposed model to a multivariate abundance dataset comprising overdispersed counts of 38 Carabidae ground beetle species sampled throughout Scotland, along with information about the environmental conditions of each site and the traits of each species. Results show in particular that the relationships between the mean abundances of various beetle species and environmental covariates are different and that beetle total length has statistically important effect in driving the correlations between the species. Simulations demonstrate the strong finite sample performance of the proposed estimator in terms of point estimation and inference.
翻译:暂无翻译