It has been demonstrated in many scientific fields that artificial neural networks like autoencoders or Siamese networks encode meaningful concepts in their latent spaces. However, there does not exist a comprehensive framework for retrieving this information in a human-readable form without prior knowledge. In order to extract these concepts, we introduce a framework for finding closed-form interpretations of neurons in latent spaces of artificial neural networks. The interpretation framework is based on embedding trained neural networks into an equivalence class of functions that encode the same concept. We interpret these neural networks by finding an intersection between the equivalence class and human-readable equations defined by a symbolic search space. The approach is demonstrated by retrieving invariants of matrices and conserved quantities of dynamical systems from latent spaces of Siamese neural networks.
翻译:暂无翻译