Feature pyramids have become ubiquitous in multi-scale computer vision tasks such as object detection. Given their importance, a computer vision network can be divided into three parts: a backbone (generating a feature pyramid), a neck (refining the feature pyramid) and a head (generating the final output). Many existing networks operating on feature pyramids, named necks, are shallow and mostly focus on communication-based processing in the form of top-down and bottom-up operations. We present a new neck architecture called Trident Pyramid Network (TPN), that allows for a deeper design and for a better balance between communication-based processing and self-processing. We show consistent improvements when using our TPN neck on the COCO object detection benchmark, outperforming the popular BiFPN baseline by 0.5 AP, both when using the ResNet-50 and the ResNeXt-101-DCN backbone. Additionally, we empirically show that it is more beneficial to put additional computation into the TPN neck, rather than into the backbone, by outperforming a ResNet-101+FPN baseline with our ResNet-50+TPN network by 1.7 AP, while operating under similar computation budgets. This emphasizes the importance of performing computation at the feature pyramid level in modern-day object detection systems. Code is available at https://github.com/CedricPicron/TPN .


翻译:在诸如物体探测等多种规模计算机视觉任务中,特质金字塔变得无处不在。鉴于其重要性,计算机视觉网络可以分为三个部分:骨干(产生一个特征金字塔)、颈部(精细特征金字塔)和头部(产生最终产出);许多在特质金字塔上运作的网络,称为颈部,是浅的,主要侧重于以自上而下和自下而上行动的形式进行基于通信的处理;我们提出了一个新的颈部结构,称为三叉戟金字塔网络(TPN),它可以进行更深层次的设计,在通信处理和自处理之间实现更好的平衡。我们在使用COCO物体探测基准的主题方案网络颈部时显示不断的改进,在使用ResNet-50和ResNXt-101-DCN主干线时,比BIFPN基准低0.5;在使用ResNet-101+FPN网络网络和ResNet-50+TPN网络网络的基线时,我们展示了不断改进的改进。在1.7 AP-PIBM 的现代检测模型模型中,在进行类似的计算时,我们的经验显示这个系统的重要性。

0
下载
关闭预览

相关内容

Pyramid is a small, fast, down-to-earth Python web application development framework.
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
17+阅读 · 2021年3月29日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员