Motivated by applications in medical sciences, we study finite chromatic sets in Euclidean space from a topological perspective. Based on persistent homology for images, kernels and cokernels, we design provably stable homological quantifiers that describe the geometric micro- and macro-structure of how the color classes mingle. These can be efficiently computed using chromatic variants of Delaunay mosaics and Alpha complexes.
翻译:在医学应用的推动下,我们从地形学角度研究欧几里德空间的有限色谱组。基于图像、内核和焦炭的持久性同系,我们设计了可观察到稳定的同系质量化符,用以描述颜色等级如何混合的几何微和宏观结构。这些可使用德劳纳和阿尔法复合体的色谱变量进行高效计算。